MODAL INFORMATION LOGIC: DECIDABILITY AND COMPLETENESS

Søren Brinck Knudstorp
Extract of MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili
September 7, 2022

Universiteit van Amsterdam
Plan for the talk

- Introducing the logics
- Stating the problems
- Outlining the strategy
- Solving the problems using the strategy
Defining (the basic) modal information logics (MILs)

Definition (language and semantics)
The language is given by

\[\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \text{sup} \rangle \varphi \psi, \]

and the semantics of ‘\langle \text{sup} \rangle’ is:

\[w \vDash \langle \text{sup} \rangle \varphi \psi \iff \exists u, v (u \vDash \varphi; v \vDash \psi; \ w = \text{sup}\{u, v\}) \]

Example

\[w \vDash \langle \text{sup} \rangle pq \]

\[u \vDash p \]

\[v \vDash q \]

Definition (frames and logics)
Three classes of frames \((W, \leq)\), namely those where

(Pre) \((W, \leq)\) is a preorder (refl., tr.);

(Pos) \((W, \leq)\) is a poset (anti-sym. preorder); and

(Sem) \((W, \leq)\) is a join-semilattice (poset w. all bin. joins)

Resulting in the logics \(\text{MIL}_{\text{Pre}}, \text{MIL}_{\text{Pos}}, \text{MIL}_{\text{Sem}}\), respectively.
Defining (the basic) modal information logics (MILs)

Definition (language and semantics)
The language is given by

\[\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \text{sup} \rangle \varphi \psi, \]

and the semantics of ‘\(\langle \text{sup} \rangle \)’ is:

\[w \models \langle \text{sup} \rangle \varphi \psi \iff \exists u, v (u \models \varphi; v \models \psi; w = \text{sup}\{u, v\}) \]

Example

\[w \models \langle \text{sup} \rangle pq \]

Definition (frames and logics)
Three classes of frames \((W, \leq)\), namely those where

\[\begin{align*}
(\text{Pre}) \quad & (W, \leq) \text{ is a preorder (refl., tr.);} \\
(\text{Pos}) \quad & (W, \leq) \text{ is a poset (anti-sym. preorder); and} \\
(\text{Sem}) \quad & (W, \leq) \text{ is a join-semilattice (poset w. all bin. joins)}
\end{align*} \]

Resulting in the logics \(\text{MIL}_{\text{Pre}}, \text{MIL}_{\text{Pos}}, \text{MIL}_{\text{Sem}}, \) respectively.
Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The *language* is given by

\[
\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \text{sup} \rangle \varphi \psi,
\]

and the *semantics* of ‘⟨sup⟩’ is:

\[
w \models \langle \text{sup} \rangle \varphi \psi \quad \text{iff} \quad \exists u, v (u \models \varphi; \ v \models \psi; \ w = \text{sup}\{u, v\})
\]

Example

\[
w \models \langle \text{sup} \rangle pq
\]

Definition (frames and logics)

Three classes of *frames* \((W, \leq)\), namely those where

- \((Pre)\) \((W, \leq)\) is a preorder (refl., tr.);
- \((Pos)\) \((W, \leq)\) is a poset (anti-sym. preorder); and
- \((Sem)\) \((W, \leq)\) is a join-semilattice (poset w. all bin. joins)

Resulting in the *logics* \(\text{MIL}_{Pre}, \text{MIL}_{Pos}, \text{MIL}_{Sem}\), respectively.
Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Bentham (1996)).
- Modestly extend $\mathbf{S4}$ [$MIL_{\text{Pre}}, MIL_{\text{Pos}}$].

What in particular?

Guided by two central problems (posed in van Bentham (2017, 2019)), namely

(A) axiomatizing MIL_{Pre} and MIL_{Pos}; and

(D) proving (un)decidability.
Motivation

Why MILs?

– **Connect** with other logics (e.g., truthmaker logics).
– Introduced to model a **theory of information** (by van Benthem (1996)).
– Modestly extend $\mathbf{S}4\ [MIL_{Pre}, MIL_{Pos}]$.

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MIL_{Pre} and MIL_{Pos}; and
(D) proving (un)decidability.
Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\text{S4} [\text{MIL}_\text{Pre}, \text{MIL}_\text{Pos}]$.

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MIL_Pre and MIL_Pos; and
(D) proving (un)decidability.
Motivation

Why MILs?

- **Connect** with other logics (e.g., truthmaker logics).
- Introduced to model a *theory of information* (by van Benthem (1996)).
- Modestly extend $\mathbf{S4}$ $[\text{MIL}_{\text{Pre}}, \text{MIL}_{\text{Pos}}]$.

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MIL_{Pre} and MIL_{Pos}; and
(D) proving (un)decidability.
Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S_4 $[\text{MIL}_{\text{Pre}}, \text{MIL}_{\text{Pos}}]$.

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MIL_{Pre} and MIL_{Pos}; and
(D) proving (un)decidability.
Motivation

Why MILs?

- **Connect** with other logics (e.g., truthmaker logics).
- Introduced to model a **theory of information** (by van Benthem (1996)).
- Modestly extend $S4$ $[\text{MIL}_\text{Pre}, \text{MIL}_\text{Pos}]$.

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MIL_Pre and MIL_Pos; and
(D) proving (un)decidability.
Initial study \((MIL_{Pre} \text{ and } MIL_{Pos})\)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):

1. We axiomatize \(MIL_{Pre}\) (and deduce \(MIL_{Pre} = MIL_{Pos}\)).
2. Use the axiomatization to find another class of structures \(C\) for which \(\text{Log}(C) = MIL_{Pre}\).
3. Prove that on \(C\) we do have the FMP and deduce decidability.
Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):

1. We axiomatize $\textit{MIL}_{\text{Pre}}$ (and deduce $\textit{MIL}_{\text{Pre}} = \textit{MIL}_{\text{Pos}}$).
2. Use the axiomatization to find another class of structures \mathcal{C} for which $\text{Log}(\mathcal{C}) = \textit{MIL}_{\text{Pre}}$.
3. Prove that on \mathcal{C} we do have the FMP and deduce decidability.
Initial study (MIL_{Pre} and MIL_{Pos})

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):

1. We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
2. Use the axiomatization to find another class of structures C for which $\text{Log}(C) = MIL_{Pre}$.
3. Prove that on C we do have the FMP and deduce decidability.
Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):

1. We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
2. Use the axiomatization to find another class of structures C for which $\text{Log}(C) = MIL_{Pre}$.
3. Prove that on C we do have the FMP and deduce decidability.
Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):

(1) We axiomatize \(MIL_{pre} \) (and deduce \(MIL_{pre} = MIL_{pos} \)).
(2) Use the axiomatization to find another class of structures \(C \) for which \(\log(C) = MIL_{pre} \).
(3) Prove that on \(C \) we do have the FMP and deduce decidability.
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}} \) is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) \(p \land q \rightarrow \langle \text{sup} \rangle pq \)
- (4) \(PPp \rightarrow Pp \)
- (Co.) \(\langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle qp \)
- (Dk.) \((p \land \langle \text{sup} \rangle qr) \rightarrow \langle \text{sup} \rangle pq \)

Proof idea

Soundness

For completeness, let \(\Gamma \supseteq \Gamma_0 \) be an MCS extending some consistent \(\Gamma_0 \). We construct a satisfying model using the step-by-step method:

- (Base) Singleton frame \(F_0 := (\{x_0\}, \{(x_0, x_0)\}) \) and ‘labeling’ \(l_0(x_0) = \Gamma \).
- (Ind) Suppose \((F_n, l_n)\) has been constructed.
 - If \(x \in F_n \) and \(\neg \langle \text{sup} \rangle \psi \psi' \in l_n(x) \) but \(x = \text{sup}_n \{y, z\} \) s.t. \(\psi \in l_n(y), \psi' \in l_n(z) \), coherently extend to \((F_{n+1}, l_{n+1}) \supseteq (F_n, l_n) \) so that \(x \neq \text{sup}_{n+1} \{y, z\} \).
 - Similarly, for \(\langle \text{sup} \rangle \chi \chi' \in l_n(x) \).
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}} \) is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) \(p \land q \rightarrow \langle \sup \rangle pq \)
- (4) \(PPp \rightarrow Pp \)
- (Co.) \(\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp \)
- (Dk.) \((p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq \)

Proof idea

Soundness ✔
For completeness, let \(\Gamma \supseteq \Gamma_0 \) be an MCS extending some consistent \(\Gamma_0 \). We construct a satisfying model using the step-by-step method:

- (Base) Singleton frame \(F_0 := (\{x_0\}, \{(x_0, x_0)\}) \) and ‘labeling’ \(l_0(x_0) = \Gamma \).
- (Ind) Suppose \((F_n, l_n) \) has been constructed.
 - If \(x \in F_n \) and \(\neg \langle \sup \rangle \psi \psi' \in l_n(x) \) but \(x = \sup \{y, z\} \) s.t. \(\psi \in l_n(y), \psi' \in l_n(z) \), coherently extend to \((F_{n+1}, l_{n+1}) \supseteq (F_n, l_n) \) so that \(x \neq \sup \{y, z\} \).
 - Similarly, for \(\langle \sup \rangle \chi \chi' \in l_n(x) \).
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}} \) is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) \(p \land q \rightarrow \langle \text{sup} \rangle pq \)
- (4) \(PPp \rightarrow Pp \)
- (Co.) \(\langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle qp \)
- (Dk.) \((p \land \langle \text{sup} \rangle qr) \rightarrow \langle \text{sup} \rangle pq \)

Proof idea

Soundness ✓

For completeness, let \(\Gamma \supseteq \Gamma_0 \) be an MCS extending some consistent \(\Gamma_0 \). We construct a satisfying model using the step-by-step method:

- (Base) Singleton frame \(F_0 := (\{x_0\}, \{(x_0, x_0)\}) \) and ‘labeling’ \(l_0(x_0) = \Gamma \).

- (Ind) Suppose \((F_n, l_n) \) has been constructed.
 - If \(x \in F_n \) and \(\neg \langle \text{sup} \rangle \psi \psi' \in l_n(x) \) but \(x = \sup_n \{y, z\} \) s.t. \(\psi \in l_n(y), \psi' \in l_n(z) \), coherently extend to \((F_{n+1}, l_{n+1}) \supseteq (F_n, l_n) \) so that \(x \neq \sup_{n+1} \{y, z\} \).
 - Similarly, for \(\langle \text{sup} \rangle \chi \chi' \in l_n(x) \).
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}} \) is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) \(p \land q \rightarrow \langle \text{sup} \rangle pq \)

(4) \(PpPp \rightarrow Pp \)

(Co.) \(\langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle qp \)

(Dk.) \((p \land \langle \text{sup} \rangle qr) \rightarrow \langle \text{sup} \rangle pq \)

Proof idea

Soundness

For completeness, let \(\Gamma \supseteq \Gamma_0 \) be an MCS extending some consistent \(\Gamma_0 \). We construct a satisfying model using the step-by-step method:

(Base) Singleton frame \(F_0 := \{x_0\}, \{(x_0, x_0)\} \) and ‘labeling’ \(l_0(x_0) = \Gamma \).

(Ind) Suppose \((F_n, l_n) \) has been constructed.

- If \(x \in F_n \) and \(\neg \langle \text{sup} \rangle \psi \psi' \in l_n(x) \) but \(x = \text{sup}_n\{y, z\} \) s.t. \(\psi \in l_n(y), \psi' \in l_n(z) \), coherently extend to \((F_{n+1}, l_{n+1}) \supseteq (F_n, l_n) \) so that \(x \neq \text{sup}_{n+1}\{y, z\} \).

- Similarly, for \(\langle \text{sup} \rangle \chi \chi' \in l_n(x) \).
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}}\) is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) \(p \land q \rightarrow \langle \text{sup} \rangle pq\)
- (4) \(PPp \rightarrow Pp\)
- (Co.) \(\langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle qp\)
- (Dk.) \((p \land \langle \text{sup} \rangle qr) \rightarrow \langle \text{sup} \rangle pq\)

Proof idea

Soundness ✓

For completeness, let \(\Gamma \supseteq \Gamma_0\) be an MCS extending some consistent \(\Gamma_0\). We construct a satisfying model using the step-by-step method:

- (Base) Singleton frame \(F_0 := \{x_0\}, \{(x_0, x_0)\}\) and ‘labeling’ \(l_0(x_0) = \Gamma\).
- (Ind) Suppose \((F_n, l_n)\) has been constructed.
 - If \(x \in F_n\) and \(\neg \langle \text{sup} \rangle \psi \psi' \in l_n(x)\) but \(x = \sup_n \{y, z\}\) s.t. \(\psi \in l_n(y), \psi' \in l_n(z)\), coherently extend to \((F_{n+1}, l_{n+1}) \supseteq (F_n, l_n)\) so that \(x \neq \sup_{n+1} \{y, z\}\).
 - Similarly, for \(\langle \text{sup} \rangle \chi \chi' \in l_n(x)\).
(1): axiomatizing MIL_{Pre}

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

- **(Re.)** $p \wedge q \rightarrow \langle \sup \rangle pq$
- **(4)** $PPp \rightarrow Pp$
- **(Co.)** $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
- **(Dk.)** $(p \wedge \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness ✔

For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0. We construct a satisfying model using the step-by-step method:

- **(Base)** Singleton frame $F_0 := (\{x_0\}, \{(x_0, x_0)\})$ and ‘labeling’ $l_0(x_0) = \Gamma$.

- **(Ind)** Suppose (F_n, l_n) has been constructed.
 - If $x \in F_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \sup_n \{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(F_{n+1}, l_{n+1}) \supseteq (F_n, l_n)$ so that $x \neq \sup_{n+1} \{y, z\}$.
 - Similarly, for $\langle \sup \rangle \chi \chi' \in l_n(x)$.

6
Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) $p \land q \rightarrow \langle \sup \rangle pq$
- (4) $PPp \rightarrow Pp$
- (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
- (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness ✓

For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0. We construct a satisfying model using the step-by-step method:

(Base) Singleton frame $F_0 := \{x_0\}, \{(x_0, x_0)\}$ and ‘labeling’ $l_0(x_0) = \Gamma$.

(Ind) Suppose (F_n, l_n) has been constructed.
- If $x \in F_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \text{sup}_n\{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(F_{n+1}, l_{n+1}) \supseteq (F_n, l_n)$ so that $x \neq \text{sup}_{n+1}\{y, z\}$.
- Similarly, for $\langle \sup \rangle \chi \chi' \in l_n(x)$.
Completeness of MIL_{Pre} (cont.)

Example

\[
\{\langle \sup \rangle \chi_0 \chi_0', \langle \sup \rangle \chi_1 \chi_1' \} \subseteq l(x)
\]

\[
\langle \sup \rangle \text{-repair} \leadsto \langle \sup \rangle \text{-repair} \leadsto \neg \langle \sup \rangle \text{-repair}
\]

\[
x \in l(y) \quad x_0 \in l(z)
\]

\[
\neg \langle \sup \rangle \psi \psi' \in l(x)
\]

\[
\neg \langle \sup \rangle \text{-repair}
\]

\[
y \quad \psi \in l(z)
\]

\[
z \quad \psi' \in l(z')
\]

\[
x \quad d
\]

\[
y' \quad \psi' \in l(y')
\]
(1): axiomatizing MIL_{Pre}

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

- **(Re.)** $p \land q \rightarrow \langle \text{sup} \rangle pq$
- **(4)** $PPp \rightarrow Pp$
- **(Co.)** $\langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle qP$
- **(Dk.)** $(p \land \langle \text{sup} \rangle qr) \rightarrow \langle \text{sup} \rangle pq$

About the proof

Soundness: routine.

Corollary

As a corollary we get that $\text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}}$.
Axiomatization (soundness and completeness)

\(\text{MIL}_{\text{Pre}} \) is (sound and complete w.r.t.) the least normal modal logic with axioms:

\begin{align*}
(\text{Re.}) & \quad p \land q \rightarrow \langle \text{sup} \rangle pq \\
(4) & \quad P P p \rightarrow P p \\
(\text{Co.}) & \quad \langle \text{sup} \rangle pq \rightarrow \langle \text{sup} \rangle q p \\
(\text{Dk.}) & \quad (p \land \langle \text{sup} \rangle q r) \rightarrow \langle \text{sup} \rangle p q
\end{align*}

About the proof

Soundness: routine.

Corollary

As a corollary we get that \(\text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}} \).
(2) and (3): ‘decidability via completeness’

(2) Find another class C for which $\text{Log}(C) = \text{MIL}_{\text{Pre}}$:

(i) Nothing in the ax. of MIL_{Pre} necessitating ‘$\langle \sup \rangle$’ to be interpreted using a supremum relation.

(ii) Canon. re-interpretation:

$$C := \{(W, C) \mid (W, C) \Vdash (\text{Re.}) \land (\text{Co.}) \land (4) \land (\text{Dk.})\},$$

where $C' \subseteq W^3$ is an arbitrary relation.

(iii) Then $\text{Log}(C) = \text{MIL}_{\text{Pre}}$.

(3) Decidability through FMP on C:

(i) On C, we get the FMP through filtration.

(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class \mathcal{C} for which $\text{Log}(\mathcal{C}) = \text{MIL}_{\text{Pre}}$:
 (i) Nothing in the ax. of MIL_{Pre} necessitating ‘$\langle \sup \rangle$’ to be interpreted using a supremum relation.
 (ii) Canon. re-interpretation:

 \[
 \mathcal{C} := \left\{ (W, C) \mid (W, C) \models (\text{Re.}) \land (\text{Co.}) \land (4) \land (\text{Dk.}) \right\},
 \]

 where $C \subseteq W^3$ is an arbitrary relation.
 (iii) Then $\text{Log}(\mathcal{C}) = \text{MIL}_{\text{Pre}}$.

(3) Decidability through FMP on \mathcal{C}:
 (i) On \mathcal{C}, we get the FMP through filtration.
 (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) Find another class \(C \) for which \(\log(C) = \text{MIL}_{\text{Pre}} \):

(i) Nothing in the ax. of \(\text{MIL}_{\text{Pre}} \) necessitating ‘\(\langle \sup \rangle \)’ to be interpreted using a suprimum relation.

(ii) Canon. re-interpretation:

\[
C := \{(W, C) \mid (W, C) \vDash (\text{Re.}) \land (\text{Co.}) \land (4) \land (\text{Dk.})\},
\]

where \(C \subseteq W^3 \) is an arbitrary relation.

(iii) Then \(\log(C) = \text{MIL}_{\text{Pre}} \).

(3) Decidability through FMP on \(C \):

(i) On \(C \), we get the FMP through filtration.

(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class C for which $\text{Log}(C) = \text{MIL}_{\text{Pre}}$:

(i) Nothing in the ax. of MIL_{Pre} necessitating $\langle \sup \rangle$ to be interpreted using a supremum relation.

(ii) Canon. re-interpretation:

$$C := \{ (W, C) \mid (W, C) \models (\text{Re.}) \land (\text{Co.}) \land (4) \land (\text{Dk.}) \},$$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $\text{Log}(C) = \text{MIL}_{\text{Pre}}$.

(3) Decidability through FMP on C:

(i) On C, we get the FMP through filtration.

(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class C for which $\text{Log}(C) = \text{MIL}_{\text{pre}}$:

(i) Nothing in the ax. of MIL_{pre} necessitating ‘$\langle \sup \rangle$’ to be interpreted using a supremum relation.

(ii) Canon. re-interpretation:

$$C := \{(W, C) \mid (W, C) \models (Re.) \land (Co.) \land (4) \land (Dk.)\},$$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $\text{Log}(C) = \text{MIL}_{\text{pre}}$.

(3) Decidability through FMP on C:

(i) On C, we get the FMP through filtration.

(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class \(C \) for which \(\log(\mathcal{C}) = \text{MIL}_{\text{Pre}} \):

 (i) Nothing in the ax. of \(\text{MIL}_{\text{Pre}} \) necessitating ‘\(\langle \sup \rangle \)’ to be interpreted using a \text{supremum} relation.

 (ii) Canon. re-interpretation:

 \[
 \mathcal{C} := \{(W, C) \mid (W, C) \models (R_e.) \land (C_0.) \land (4) \land (Dk.)\},
 \]

 where \(C \subseteq W^3 \) is an \text{arbitrary} relation.

 (iii) Then \(\log(\mathcal{C}) = \text{MIL}_{\text{Pre}} \).

(3) **Decidability through FMP on \(\mathcal{C} \):**

 (i) On \(\mathcal{C} \), we get the FMP through filtration.

 (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class \(\mathcal{C} \) for which \(\text{Log}(\mathcal{C}) = \text{MIL}_{\text{Pre}} \):

(i) Nothing in the ax. of \(\text{MIL}_{\text{Pre}} \) necessitating \(\langle \sup \rangle \) to be interpreted using a \textit{supremum} relation.
(ii) Canon. re-interpretation:

\[
\mathcal{C} := \{(W, C) \mid (W, C) \models (\text{Re.}) \land (\text{Co.}) \land (4) \land (Dk.)\},
\]

where \(C \subseteq W^3 \) is an \textit{arbitrary} relation.
(iii) Then \(\text{Log}(\mathcal{C}) = \text{MIL}_{\text{Pre}} \).

(3) Decidability through FMP on \(\mathcal{C} \):

(i) On \(\mathcal{C} \), we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

\text{Gen. takeaway:} When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class \(C \) for which \(\text{Log}(C) = \text{MIL}_{\text{Pre}} \):

(i) Nothing in the ax. of \(\text{MIL}_{\text{Pre}} \) necessitating ‘\(\langle \sup \rangle \)’ to be interpreted using a supremum relation.

(ii) Canon. re-interpretation:

\[
C := \{(W, C') \mid (W, C') \models (\text{Re.}) \land (\text{Co.}) \land (4) \land (Dk.)\},
\]

where \(C' \subseteq W^3 \) is an arbitrary relation.

(iii) Then \(\text{Log}(C) = \text{MIL}_{\text{Pre}} \).

(3) Decidability through FMP on \(C \):

(i) On \(C \), we get the FMP through filtration.

(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
(2) and (3): ‘decidability via completeness’

(2) Find another class C for which $\text{Log}(C) = \text{MIL}_{\text{Pre}}$:
 (i) Nothing in the ax. of MIL_{Pre} necessitating ‘$\langle \sup \rangle$’ to be interpreted using a suprenum relation.
 (ii) Canon. re-interpretation:
 $$C := \{ (W, C') \mid (W, C') \vdash (\text{Re.}) \land (\text{Co.}) \land (4) \land (Dk.) \},$$
 where $C' \subseteq W^3$ is an arbitrary relation.
 (iii) Then $\text{Log}(C) = \text{MIL}_{\text{Pre}}$.

(3) Decidability through FMP on C:
 (i) On C, we get the FMP through filtration.
 (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not having the FMP (w.r.t. the class of definition) might not be very telling.
How about join-semilattices (i.e., MIL_{Sem})?
Axiomatizing \(\text{MIL}_{\text{Sem}} \)

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)

\[M \]

Standard step-by-step (e.g., MIL\(_{\text{Pre}}\))

\[M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_\omega \]

‘Indeterministic step-by-step’ (MIL\(_{\text{Sem}}\))

Model constr.:

\[M_0 \rightarrow M_{01} \rightarrow M_{011} \rightarrow \cdots \]

Axioms:

\[\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \cdots \]
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)

- Model constr.
- Axioms: π_0, π_1, π_2, ...$

Standard step-by-step (e.g., MIL_{Pre})

- M_0, M_1, M_2, ..., M_∞

‘Indeterministic step-by-step’ (MIL_{Sem})

- Model constr.
- Axioms: π_0, π_1, π_2, ...$

\pi_0$ π_1 π_2
Axiomatizing \textit{MIL}_{Sem}

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)

M_0

Standard step-by-step (e.g., \textit{MIL}_{Pre})

$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_\omega$

‘Indeterministic step-by-step’ (\textit{MIL}_{Sem})

Model constr.: \[M_0 \rightarrow M_{01} \rightarrow \cdots \rightarrow M_{01n_01} \rightarrow \cdots \]

Axioms: $\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \cdots$
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

<table>
<thead>
<tr>
<th>Henkin (e.g., K)</th>
<th>Standard step-by-step (e.g., MIL_{Pre})</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_{\omega}$</td>
</tr>
</tbody>
</table>

‘Indeterministic step-by-step’ (MIL_{Sem})

Model constr.:

- M_0
- M_{01}
- M_{011}
- \cdots
- M_{0n0}
- M_{0n0n0}
- \cdots

Axioms:

- π_0
- π_1
- π_2
- \cdots
Thank you!

Can we generalize these techniques?
(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and $S4$] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

\[
v \vDash \varphi \backslash \psi \quad \mathrm{iff} \quad \forall u, w ([u \vDash \varphi, w = \sup\{u, v\}] \Rightarrow w \vDash \psi)
\]

We denote the resulting logics as MIL_{Pre}, MIL_{Pos}, respectively.

The problems now become

(A) axiomatizing MIL_{Pre} and MIL_{Pos}; and
(D) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic $\text{Log}_{\cdot}(\mathcal{C})$;
(2’) through representation show that $\text{Log}_{\cdot}(\mathcal{C}) = MIL_{\text{Pre}} = MIL_{\text{Pos}}$; and
(3) get decidability through FMP on \mathcal{C}.
(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and $\textbf{S4}$] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

$$v \models \varphi \setminus \psi \iff \forall u, w ([u \models \varphi, w = \sup\{u, v\}] \Rightarrow w \models \psi)$$

We denote the resulting logics as $\text{MIL}_{\text{-Pre}}$, $\text{MIL}_{\text{-Pos}}$, respectively.

The problems now become

(A) aximatizing $\text{MIL}_{\text{-Pre}}$ and $\text{MIL}_{\text{-Pos}}$; and
(D) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) aximatize the logic $\text{Log}_{\text{\setminus}} (\mathcal{C})$;
(2’) through representation show that $\text{Log}_{\text{\setminus}} (\mathcal{C}) = \text{MIL}_{\text{-Pre}} = \text{MIL}_{\text{-Pos}}$; and
(3) get decidability through FMP on \mathcal{C}.

15
(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and S4] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

$$v \models \varphi \setminus \psi \quad \text{iff} \quad \forall u, w ([u \models \varphi, w = \sup\{u, v\}] \Rightarrow w \models \psi)$$

We denote the resulting logics as $\text{MIL}_{-\text{Pre}}, \text{MIL}_{-\text{Pos}}$, respectively.

The problems now become

(A\) axiomatizing $\text{MIL}_{-\text{Pre}}$ and $\text{MIL}_{-\text{Pos}}$; and

(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic $\text{Log}_{\setminus}(C)$;

(2’) through representation show that $\text{Log}_{\setminus}(C) = \text{MIL}_{-\text{Pre}} = \text{MIL}_{-\text{Pos}}$; and

(3) get decidability through FMP on C.
(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and $S4$] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

$$v \models \varphi \triangleright \psi \iff \forall u, w([u \models \varphi, w = \sup\{u, v\}] \Rightarrow w \models \psi)$$

We denote the resulting logics as MIL_{Pre}, MIL_{Pos}, respectively.

The problems now become

(A\) axiomatizing MIL_{Pre} and MIL_{Pos}; and

(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic $\text{Log}_{\text{\textbackslash}}(C)$;
(2’) through representation show that $\text{Log}_{\text{\textbackslash}}(C) = MIL_{\text{Pre}} = MIL_{\text{Pos}}$; and
(3) get decidability through FMP on C.

15
(Natural) extensions of \(MIL_{\text{Pre}} \) and \(MIL_{\text{Pos}} \) [and \(S4 \)] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

\[
v \models \varphi \\text{\(\backslash \) } \psi \iff \forall u, w ([u \models \varphi, w = \sup\{u, v\}] \Rightarrow w \models \psi)
\]

We denote the resulting logics as \(MIL_{\backslash-\text{Pre}}, MIL_{\backslash-\text{Pos}} \), respectively.

The problems now become

(A\’) axiomatizing \(MIL_{\backslash-\text{Pre}} \) and \(MIL_{\backslash-\text{Pos}} \); and

(D\’) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic \(\text{Log}_{\backslash}(C) \);

(2’) through representation show that \(\text{Log}_{\backslash}(C) = MIL_{\backslash-\text{Pre}} = MIL_{\backslash-\text{Pos}} \); and

(3) get decidability through FMP on \(C \).
(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and $\textbf{S4}$] are obtained by adding an informational implication ‘\’.

Definition

The language is given by adding ‘\’ with semantics:

\[
v \models_\to \varphi \backslash \psi \iff \forall u, w([u \models \varphi, w = \sup\{u, v\}] \Rightarrow w \models \psi)
\]

We denote the resulting logics as $\text{MIL}_{\text{Pre}}, \text{MIL}_{\text{Pos}}$, respectively.

The problems now become

(A\) axiomatizing MIL_{Pre} and MIL_{Pos}; and
(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic $\text{Log}_{\to}(C)$;
(2’) through representation show that $\text{Log}_{\to}(C) = \text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}}$; and
(3) get decidability through FMP on C.

15
Question: What happens if we extend $\mathbf{S}4$ with vocabulary for \textit{minimal} instead of \textit{least} upper bounds?

Answer: Nothing. We get the exact same logics:

$$\text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}} = \text{MIL}^{\text{Min}}_{\text{Pre}} = \text{MIL}^{\text{Min}}_{\text{Pos}}$$

and even

$$\text{MIL}_{\text{-Pre}} = \text{MIL}_{\text{-Pos}} = \text{MIL}^{\text{Min}}_{\text{-Pre}} = \text{MIL}^{\text{Min}}_{\text{-Pos}}$$

This concludes and summarizes our study of MILs on preorders and posets.
Question: What happens if we extend $\mathbf{S4}$ with vocabulary for \textit{minimal} instead of \textit{least} upper bounds?

Answer: Nothing. We get the exact same logics:

\[
\text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}} = \text{MIL}_{\text{Min}}^{\text{Pre}} = \text{MIL}_{\text{Min}}^{\text{Pos}}
\]

and even

\[
\text{MIL}_{\text{-Pre}} = \text{MIL}_{\text{-Pos}} = \text{MIL}_{\text{-Min}}^{\text{Pre}} = \text{MIL}_{\text{-Min}}^{\text{Pos}}
\]

This concludes and summarizes our study of MILs on preorders and posets.
Question: What happens if we extend $S4$ with vocabulary for \textit{minimal} instead of \textit{least} upper bounds?

Answer: Nothing. We get the exact same logics:

$$MIL_{\text{Pre}} = MIL_{\text{Pos}} = MIL_{\text{Pre}}^{\text{Min}} = MIL_{\text{Pos}}^{\text{Min}}$$

and even

$$MIL_{\text{-Pre}} = MIL_{\text{-Pos}} = MIL_{\text{-Pre}}^{\text{Min}} = MIL_{\text{-Pos}}^{\text{Min}}$$

This concludes and summarizes our study of MILs on preorders and posets.
Question: What happens if we extend $\mathbf{S4}$ with vocabulary for
minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$MIL_{\text{Pre}} = MIL_{\text{Pos}} = MIL^{\text{Min}}_{\text{Pre}} = MIL^{\text{Min}}_{\text{Pos}}$$

and even

$$MIL_{\text{-Pre}} = MIL_{\text{-Pos}} = MIL^{\text{Min}}_{\text{-Pre}} = MIL^{\text{Min}}_{\text{-Pos}}$$

This concludes and summarizes our study of MILs on preorders and posets.
Question: What happens if we extend $\textbf{S4}$ with vocabulary for \textit{minimal} instead of \textit{least} upper bounds?

Answer: Nothing. We get the exact same logics:

$$\text{MIL}_{\text{Pre}} = \text{MIL}_{\text{Pos}} = \text{MIL}^{\text{Min}}_{\text{Pre}} = \text{MIL}^{\text{Min}}_{\text{Pos}}$$

and even

$$\text{MIL}_{\text{-Pre}} = \text{MIL}_{\text{-Pos}} = \text{MIL}^{\text{Min}}_{\text{-Pre}} = \text{MIL}^{\text{Min}}_{\text{-Pos}}$$

This concludes and summarizes our study of MILs on preorders and posets.
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

- **Henkin (e.g., K)**

 \[
 M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_\omega
 \]

- **Standard step-by-step (e.g., MIL_{Pre})**

 \[
 M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_\omega
 \]

- **‘Indeterministic step-by-step’ (MIL_{Sem})**

 Model constr.:

 \[
 M_0
 \]

 \[
 \pi_0 \quad \pi_1 \quad \pi_2 \quad \cdots
 \]

 Axioms:
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)

- M

Standard step-by-step (e.g., MIL_{Pre})

- $M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_\omega$

"Indeterministic step-by-step" (MIL_{Sem})

Model constr.:

- M_0
- \cdots
- M_{01}
- \cdots
- M_{01n01}
- \cdots
- M_{0n0}
- \cdots
- $M_{0n0n0n0}$

Axioms:

- π_0
- π_1
- π_2
- \cdots
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)

\[\mathcal{M} \]

Standard step-by-step (e.g., MIL$_{\text{Pre}}$)

\[\mathcal{M}_0 \rightarrow \mathcal{M}_1 \rightarrow \mathcal{M}_2 \rightarrow \cdots \rightarrow \mathcal{M}_\omega \]

‘Indeterministic step-by-step’ (MIL_{Sem})

Model constr.:

\[\mathcal{M}_0 \rightarrow \mathcal{M}_{01} \rightarrow \mathcal{M}_{011} \rightarrow \cdots \]

\[\mathcal{M}_{0n_0} \rightarrow \mathcal{M}_{0n_01} \rightarrow \mathcal{M}_{0n_0n_01} \rightarrow \cdots \]

Axioms:

\[\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \cdots \]
Axiomatizing MIL_{Sem}

Three ways to completeness (some intuitions for our proof):

<table>
<thead>
<tr>
<th>Henkin (e.g., \mathbf{K})</th>
<th>Standard step-by-step (e.g., MIL_{Pre})</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{M}</td>
<td>$\mathbb{M}_0 \rightarrow \mathbb{M}_1 \rightarrow \mathbb{M}2 \rightarrow \cdots \rightarrow \mathbb{M}\omega$</td>
</tr>
</tbody>
</table>

‘Indeterministic step-by-step’ (MIL_{Sem})

Model constr.:

Axioms: $\pi_0, \pi_1, \pi_2, \ldots$
Conclusion and future work

What we have done:

- Thoroughly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.\(^1\)
- Axiomatized MIL_{Sem}.

What comes next:

- Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. C_{Sem}.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL_{Sem}.
- Further exploring how MILs connect to other logics.

\(^1\)See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

- Thoroughly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.\(^1\)
- Axiomatized MIL\(_{\text{Sem}}\).

What comes next:

- Proving (un)decidability of MIL\(_{\text{Sem}}\) and solving the ancillary problems of fin. ax. and the FMP w.r.t. \(C_{\text{Sem}}\).
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL\(_{\text{Sem}}\).
- Further exploring how MILs connect to other logics.

\(^1\)See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

• Thorougly surveyed the landscape of MILs on preorders and posets.
• Made crossings with the Lambek Calculus and truthmaker logics.¹
• Axiomatized MIL_{Sem}.

What comes next:

• Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. C_{Sem}.
• Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL_{Sem}.
• Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

• Thoroughly surveyed the landscape of MILs on preorders and posets.
• Made crossings with the Lambek Calculus and truthmaker logics.\(^1\)
• Axiomatized MIL_Sem.

What comes next:

• Proving (un)decidability of MIL_Sem and solving the ancillary problems of fin. ax. and the FMP w.r.t. \mathcal{C}_Sem.
• Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL_Sem.
• Further exploring how MILs connect to other logics.

\(^1\)See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

• Thorougly surveyed the landscape of MILs on preorders and posets.
• Made crossings with the Lambek Calculus and truthmaker logics.\(^1\)
• Axiomatized \(MIL_{Sem}\).

What comes next:

• Proving (un)decidability of \(MIL_{Sem}\) and solving the ancillary problems of fin. ax. and the FMP w.r.t. \(C_{Sem}\).
• Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing \(MIL_{Sem}\).
• Further exploring how MILs connect to other logics.

\(^1\)See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

- Thoroughly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.1
- Axiomatized MIL_{Sem}.

What comes next:

- Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. C_{Sem}.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL_{Sem}.
- Further exploring how MILs connect to other logics.

1See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Conclusion and future work

What we have done:

• Thoroughly surveyed the landscape of MILs on preorders and posets.
• Made crossings with the Lambek Calculus and truthmaker logics.¹
• Axiomatized MIL_{Sem}.

What comes next:

• Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. \mathcal{C}_{Sem}.
• Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing MIL_{Sem}.
• Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.
Example
Note how `<sup>` and `\` are ‘inverses’:

\[(\text{sup})p(p\to q) \to q \]

and

\[p \to q\backslash(\text{sup}pq) \]

are valid.